故障診斷可以根據(jù)狀態(tài)監(jiān)測(cè)系統(tǒng)提供的信息來(lái)查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測(cè)狀態(tài)劣化的發(fā)展趨勢(shì)等。電機(jī)故障診斷基本方法主要有:1、電氣分析法,通過(guò)頻譜等信號(hào)分析方法對(duì)負(fù)載電流的波形進(jìn)行檢測(cè)從而診斷出電機(jī)設(shè)備故障的原因和程度;檢測(cè)局部放電信號(hào);對(duì)比外部施加脈沖信號(hào)的響應(yīng)和標(biāo)準(zhǔn)響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗(yàn)裝置和診斷技術(shù)對(duì)電機(jī)設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對(duì)絕緣壽命做出預(yù)測(cè);3、溫度檢測(cè)方法,采用各種溫度測(cè)量方法對(duì)電機(jī)設(shè)備各個(gè)部位的溫升進(jìn)行監(jiān)測(cè),電機(jī)的溫升與各種故障現(xiàn)象相關(guān);4、振動(dòng)與噪聲診斷法,通過(guò)對(duì)電機(jī)設(shè)備振動(dòng)與噪聲的檢測(cè),并對(duì)獲取的信號(hào)進(jìn)行處理,診斷出電機(jī)產(chǎn)生故障的原因和部位,尤其是對(duì)機(jī)械上的損壞診斷特別有效。5、化學(xué)診斷方法,可以檢測(cè)到絕緣材料和潤(rùn)滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過(guò)對(duì)比其中一些化學(xué)成分的含量,可以判斷相關(guān)部位元件的破壞程度。利用數(shù)據(jù)分析和機(jī)器學(xué)習(xí)算法來(lái)分析設(shè)備狀態(tài)數(shù)據(jù),識(shí)別異常模式,并預(yù)測(cè)潛在故障。提高監(jiān)測(cè)的準(zhǔn)確性和效率。嘉興性能監(jiān)測(cè)特點(diǎn)
設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是設(shè)備維護(hù)手段之一。設(shè)備的故障監(jiān)測(cè)診斷技術(shù),就是利用科學(xué)的檢測(cè)方法和現(xiàn)代化技術(shù)手段,對(duì)設(shè)備目前的運(yùn)行狀態(tài)進(jìn)行監(jiān)測(cè)和排查,從而判斷出設(shè)備運(yùn)行狀態(tài)的可靠性,確認(rèn)其局部或整機(jī)是否正常運(yùn)行。煤礦用機(jī)電設(shè)備溫度振動(dòng)監(jiān)測(cè)系統(tǒng)用于煤礦主扇、壓風(fēng)機(jī)、鋼絲繩牽引帶式輸送機(jī)、滾筒帶式輸送機(jī)、排水泵和電動(dòng)機(jī)、提升機(jī)等,有助于掌握設(shè)備運(yùn)行工況中的溫度振動(dòng)數(shù)據(jù)。提升機(jī)、鋼絲繩牽引、滾筒帶式輸送機(jī)、皮帶機(jī)、空壓機(jī)、壓風(fēng)機(jī)、水泵等煤礦機(jī)電設(shè)備要求增加電動(dòng)機(jī)及主要軸承溫度和振動(dòng)監(jiān)測(cè)。裝置功能:1、提升機(jī)、水泵、皮帶機(jī)等設(shè)備電動(dòng)機(jī)主軸承溫度振動(dòng)在線監(jiān)測(cè)2、礦用高壓異步電動(dòng)機(jī)軸承溫度振動(dòng)檢測(cè)診斷3、提升機(jī)、水泵、皮帶機(jī)等設(shè)備滾筒主軸承溫度振動(dòng)在線監(jiān)測(cè)4、井下大型機(jī)電設(shè)備電動(dòng)機(jī)及主要軸承溫度振動(dòng)在線監(jiān)測(cè)5、可以同時(shí)收集電機(jī)前后軸承溫度及電機(jī)振動(dòng)量的數(shù)值,對(duì)收到的信息分析處理6、系統(tǒng)提供網(wǎng)絡(luò)接口,可直接與智能礦山網(wǎng)絡(luò)相連,也可與其它網(wǎng)絡(luò)內(nèi)的系統(tǒng)連接;7、在線系統(tǒng)軟件可實(shí)時(shí)監(jiān)測(cè)任意通道頻譜,時(shí)域波形、趨勢(shì)、三維譜圖和坐標(biāo)圖,還可通過(guò)互聯(lián)網(wǎng)進(jìn)行遠(yuǎn)程監(jiān)測(cè)。嘉興電力監(jiān)測(cè)特點(diǎn)設(shè)備狀態(tài)監(jiān)測(cè)對(duì)有關(guān)參數(shù)加以分析,從而有效地對(duì)設(shè)備運(yùn)行狀態(tài)進(jìn)行系統(tǒng)自動(dòng)監(jiān)測(cè)分析或人工分析。
電機(jī)狀態(tài)監(jiān)測(cè)和振動(dòng)分析提供加速度計(jì)選擇的建議?;谥绷骱头峭浇涣麟姍C(jī)的常見(jiàn)故障。這些常見(jiàn)故障可通過(guò)振動(dòng)分析檢測(cè)出來(lái),包括機(jī)械和電氣故障。重點(diǎn)是傳感器的頻率范圍及其安裝方法,以便可靠地檢測(cè)這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個(gè)事件的能量可從起始點(diǎn)帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測(cè)撞擊、摩擦和凹槽等事件的傳感器應(yīng)在幾百赫茲到20千赫的寬頻范圍內(nèi)響應(yīng)。對(duì)于傳統(tǒng)的機(jī)械故障,如平衡和對(duì)準(zhǔn),頻率范圍從約0.2倍的運(yùn)行速度到50-60倍的運(yùn)行速度是足夠的。電氣故障需要機(jī)械故障所需的低頻和高頻段。電機(jī)會(huì)同時(shí)出現(xiàn)機(jī)械和電氣故障,這會(huì)導(dǎo)致振動(dòng)。只要安裝的振動(dòng)傳感器具有足夠的帶寬和靈敏度,就可以檢測(cè)到這些故障。機(jī)械故障伴隨著沖擊、摩擦和疲勞,會(huì)產(chǎn)生比電氣故障頻率更劇烈的振動(dòng),但凹槽除外。凹槽產(chǎn)生的振動(dòng)頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測(cè)機(jī)械故障,那么它們也將檢測(cè)電氣故障。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A抗I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。通過(guò)監(jiān)測(cè)刀具的振動(dòng)頻率和振幅,可以評(píng)估切削過(guò)程中的穩(wěn)定性和刀具的健康狀態(tài)。
隨著電力電子技術(shù)、自動(dòng)化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了大的應(yīng)用,在市場(chǎng)競(jìng)爭(zhēng)中正逐步顯示自己的優(yōu)勢(shì)。傳統(tǒng)的電機(jī)在線監(jiān)測(cè)裝置多采用電流表、電壓表、功率表等較為原始的儀表來(lái)進(jìn)行測(cè)量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測(cè)量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測(cè)試結(jié)果不準(zhǔn)確。有些場(chǎng)合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測(cè),這樣就勢(shì)必會(huì)加大各種測(cè)量?jī)x器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測(cè)方法要求監(jiān)測(cè)人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測(cè)方法無(wú)法做定量分析,無(wú)法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測(cè)裝置和方法,通過(guò)對(duì)扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時(shí)動(dòng)態(tài)的監(jiān)測(cè)以及對(duì)過(guò)電壓、過(guò)電流、過(guò)熱進(jìn)行報(bào)警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測(cè)參數(shù)不能定量分析以及無(wú)法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問(wèn)題。電機(jī)的運(yùn)行狀態(tài)涉及多個(gè)參數(shù),包括振動(dòng)、溫度、電流、電壓等。同時(shí)監(jiān)測(cè)和分析這些多參數(shù)復(fù)雜性是一個(gè)挑戰(zhàn)。上海變速箱監(jiān)測(cè)應(yīng)用
隨著技術(shù)的發(fā)展,設(shè)備狀態(tài)監(jiān)測(cè)在工業(yè)、物聯(lián)網(wǎng)等領(lǐng)域的應(yīng)用越來(lái)越多。嘉興性能監(jiān)測(cè)特點(diǎn)
刀具監(jiān)測(cè)管理系統(tǒng)是我們基于精密加工行業(yè)特征,結(jié)合加工中心、車床等機(jī)械加工過(guò)程,打造的一款刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)分析系統(tǒng),通過(guò)采集主軸電流(負(fù)載)信號(hào)、位置信號(hào)、速度信號(hào)等30維度+數(shù)據(jù)信號(hào),結(jié)合大數(shù)據(jù)流式處理、自然語(yǔ)言處理等自學(xué)習(xí)處理算法和行業(yè)多年經(jīng)驗(yàn)數(shù)據(jù)沉淀,構(gòu)建的一套完整的刀具壽命預(yù)測(cè)和狀態(tài)監(jiān)控管理系統(tǒng),能夠?qū)崿F(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識(shí)別率達(dá)到99%以上,提供基于刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)的異常停機(jī)控制模塊,避免因刀具異常導(dǎo)致的產(chǎn)品質(zhì)量損失和異常撞機(jī)事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來(lái)的產(chǎn)品質(zhì)量損失,為用戶提供無(wú)憂機(jī)加工過(guò)程管理!嘉興性能監(jiān)測(cè)特點(diǎn)