相關(guān)濾波的跟蹤算法始于2012年P(guān).Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學(xué)上完美解決了密集采樣(Dense Sampling)的問(wèn)題,利用傅立葉變換快速實(shí)現(xiàn)了檢測(cè)的過(guò)程。在訓(xùn)練分類器時(shí),一般認(rèn)為離目標(biāo)位置較近的是正樣本,而離目標(biāo)較遠(yuǎn)的認(rèn)為是負(fù)樣本?;仡櫱懊嫣岬降腡LD或Struck,他們都會(huì)在每一幀中隨機(jī)地挑選一些塊進(jìn)行訓(xùn)練,學(xué)習(xí)到的特征是這些隨機(jī)子窗口的特征,而CSK作者設(shè)計(jì)了一個(gè)密集采樣的框架,能夠?qū)W習(xí)到一個(gè)區(qū)域內(nèi)所有圖像塊的特征?;垡暪怆婇_(kāi)發(fā)的慧視RV1126圖像處理板,采用了國(guó)產(chǎn)高性能CPU。哪里有目標(biāo)跟蹤
由于侵入的目標(biāo)的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場(chǎng)景,即背景往往比較復(fù)雜,只利用一個(gè)單幀圖像就找出移動(dòng)的目標(biāo)是非常困難的。然而,目標(biāo)的運(yùn)動(dòng)導(dǎo)致了其運(yùn)動(dòng)時(shí)間內(nèi),監(jiān)控場(chǎng)景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設(shè)置的環(huán)境較為惡劣,圖像傳輸?shù)木嚯x較遠(yuǎn),從而導(dǎo)致圖像的信噪比不高,因此采用突出目標(biāo)的方法,需要在配準(zhǔn)的前提下進(jìn)行多幀能量積累和噪聲抑制。在該技術(shù)中,要研究的問(wèn)題有,相鄰的兩幅或多幅圖像之間的關(guān)系是什么關(guān)系,是簡(jiǎn)單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數(shù)關(guān)系,是尤其需要研究的。在研究中,研究如何差,如何自動(dòng)得到差圖像的分割門限,如何減小背景和突出目標(biāo)是研究的方向。自主可控目標(biāo)跟蹤售后服務(wù)智能目標(biāo)識(shí)別及追蹤,讓目標(biāo)無(wú)處可藏。
自動(dòng)化的視頻跟蹤系統(tǒng)的工作流程一般是攝像機(jī)的模擬信號(hào)通過(guò)視頻電纜傳送至計(jì)算機(jī),計(jì)算機(jī)通過(guò)視頻采集卡將模擬視頻信號(hào)轉(zhuǎn)換為數(shù)字視頻信號(hào),該轉(zhuǎn)換的輸出的數(shù)字圖像一方面在計(jì)算機(jī)CRT上顯示,同時(shí)傳送至內(nèi)存進(jìn)行目標(biāo)檢測(cè)或跟蹤(根據(jù)需要可同時(shí)進(jìn)行硬盤錄像),計(jì)算機(jī)根據(jù)算法的運(yùn)算結(jié)果來(lái)控制攝像機(jī)的云臺(tái),這個(gè)控制過(guò)程是通過(guò)通訊協(xié)議卡和雙絞線電纜和攝像機(jī)的云臺(tái)接口來(lái)完成的。監(jiān)視和跟蹤系統(tǒng)的啟動(dòng)可以是人工的,也可以由系統(tǒng)的報(bào)警輸入設(shè)備啟動(dòng)。高性能的圖像卡一般自帶顯卡,能夠避免廉價(jià)的多媒體卡長(zhǎng)時(shí)間地、連續(xù)地通過(guò)總線傳送到計(jì)算機(jī)的顯存而帶來(lái)的死屏、CPU的占用及總線的占用等問(wèn)題。
另外,經(jīng)典的跟蹤方法還有基于特征點(diǎn)的光流跟蹤,在目標(biāo)上提取一些特征點(diǎn),然后在下一幀計(jì)算這些特征點(diǎn)的光流匹配點(diǎn),統(tǒng)計(jì)得到目標(biāo)的位置。在跟蹤的過(guò)程中,需要不斷補(bǔ)充新的特征點(diǎn),刪除置信度不佳的特征點(diǎn),以此來(lái)適應(yīng)目標(biāo)在運(yùn)動(dòng)中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點(diǎn)的來(lái)表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相關(guān)濾波的跟蹤方法出現(xiàn)后,經(jīng)典的跟蹤方法都被舍棄,這主要是因?yàn)檫@些經(jīng)典方法無(wú)法處理和適應(yīng)復(fù)雜的跟蹤變化,它們的魯棒性和準(zhǔn)確度都被前沿的算法所超越,但是,了解它們對(duì)理解跟蹤過(guò)程是有必要的,有些方法在工程上仍然有十分重要的應(yīng)用,常常被當(dāng)作一種重要的輔助手段。RK3399PRO圖像處理板識(shí)別概率超過(guò)85%。
在目標(biāo)跟蹤領(lǐng)域,場(chǎng)景信息與目標(biāo)狀態(tài)的融合十分重要,首先,場(chǎng)景信息包含了豐富的環(huán)境上下文信息,對(duì)場(chǎng)景信息進(jìn)行分析及充分利用,能夠有效地獲取場(chǎng)景的先驗(yàn)知識(shí),降低復(fù)雜的背景環(huán)境以及場(chǎng)景中與目標(biāo)相似的物體的干擾;同樣地,對(duì)目標(biāo)的準(zhǔn)確描述有助于提升檢測(cè)與跟蹤算法的準(zhǔn)確性與魯棒性.總之,嘗試研究結(jié)合背景信息和前景目標(biāo)信息的分析方法,融合場(chǎng)景信息與目標(biāo)狀態(tài),將有助于提高算法的實(shí)用性能?;垡暪怆婇_(kāi)發(fā)的圖像處理板,具備高性能、高精度的特點(diǎn),能夠進(jìn)行精確的目標(biāo)跟蹤。成都慧視的跟蹤版是國(guó)產(chǎn)化的嗎?四川目標(biāo)跟蹤好選擇
慧視微型雙光吊艙能夠?qū)崿F(xiàn)晝夜成像。哪里有目標(biāo)跟蹤
目標(biāo)運(yùn)動(dòng)估計(jì)是根據(jù)目標(biāo)在過(guò)去的位置對(duì)目標(biāo)的運(yùn)動(dòng)規(guī)律加以總結(jié),并以此對(duì)目標(biāo)將來(lái)的運(yùn)動(dòng)狀態(tài)進(jìn)行預(yù)測(cè)。正確的預(yù)測(cè),可以縮小匹配的計(jì)算區(qū)域,大幅的降低匹配計(jì)算量。在視頻跟蹤系統(tǒng)中由于被跟蹤的目標(biāo)處于運(yùn)動(dòng)狀態(tài),為了把目標(biāo)始終保持在攝像機(jī)視野之內(nèi),必須對(duì)攝像機(jī)加以控制。在實(shí)際應(yīng)用中,攝像機(jī)被固定在云臺(tái)上,云臺(tái)本身不做平移運(yùn)動(dòng),但可以控制云臺(tái)進(jìn)行水平擺動(dòng)和上下俯仰,從而帶動(dòng)攝像機(jī)做相應(yīng)運(yùn)動(dòng)。所以,對(duì)攝像機(jī)的控制就是對(duì)云臺(tái)的控制。哪里有目標(biāo)跟蹤