趨勢(shì)五:數(shù)據(jù)泄露泛濫未來(lái)幾年數(shù)據(jù)泄露事件的增長(zhǎng)率也許會(huì)達(dá)到100%,除非數(shù)據(jù)在其源頭就能夠得到安全保障??梢哉f(shuō),在未來(lái),每個(gè)財(cái)富500強(qiáng)企業(yè)都會(huì)面臨數(shù)據(jù)攻擊,無(wú)論他們是否已經(jīng)做好安全防范。而所有企業(yè),無(wú)論規(guī)模大小,都需要重新審視***的安全定義。在財(cái)富500強(qiáng)企業(yè)中,超過(guò)50%將會(huì)設(shè)置首席信息安全官這一職位。企業(yè)需要從新的角度來(lái)確保自身以及**,所有數(shù)據(jù)在創(chuàng)建之初便需要獲得安全保障,而并非在數(shù)據(jù)保存的***一個(gè)環(huán)節(jié),**加強(qiáng)后者的安全措施已被證明于事無(wú)補(bǔ)。趨勢(shì)六:數(shù)據(jù)管理成為**競(jìng)爭(zhēng)力數(shù)據(jù)管理成為**競(jìng)爭(zhēng)力,直接影響財(cái)務(wù)表現(xiàn)。當(dāng)“數(shù)據(jù)資產(chǎn)是企業(yè)**資產(chǎn)”的概念深入人心之后,企業(yè)對(duì)于數(shù)據(jù)管理便有了更清晰的界定,將數(shù)據(jù)管理作為企業(yè)**競(jìng)爭(zhēng)力,持續(xù)發(fā)展,戰(zhàn)略性規(guī)劃與運(yùn)用數(shù)據(jù)資產(chǎn),成為企業(yè)數(shù)據(jù)管理的**。數(shù)據(jù)資產(chǎn)管理效率與主營(yíng)業(yè)務(wù)收入增長(zhǎng)率、銷售收入增長(zhǎng)率***正相關(guān);此外,對(duì)于具有互聯(lián)網(wǎng)思維的企業(yè)而言,數(shù)據(jù)資產(chǎn)競(jìng)爭(zhēng)力所占比重為36.8%,數(shù)據(jù)資產(chǎn)的管理效果將直接影響企業(yè)的財(cái)務(wù)表現(xiàn)。需要通過(guò)將一個(gè)或多個(gè)設(shè)備產(chǎn)生的數(shù)據(jù)流進(jìn)行實(shí)時(shí)聚合計(jì)算。衢州人工智能物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)有哪些
高效分布式必須是高效的分布式系統(tǒng)。物聯(lián)網(wǎng)產(chǎn)生的數(shù)據(jù)量巨大,中國(guó)而言,就有5億多臺(tái)智能電表,每臺(tái)電表每隔15分鐘采集一次數(shù)據(jù),全國(guó)智能電表就會(huì)產(chǎn)生500多億條記錄。這么大的數(shù)據(jù)量,任何一臺(tái)服務(wù)器都無(wú)能力處理,因此處理系統(tǒng)必須是分布式的,水平擴(kuò)展的。為降低成本,一個(gè)節(jié)點(diǎn)的處理性能必須是高效的,需要支持?jǐn)?shù)據(jù)的快速寫入和快速查詢。2.實(shí)時(shí)處理必須是實(shí)時(shí)處理的系統(tǒng)?;ヂ?lián)網(wǎng)大數(shù)據(jù)處理,大家所熟悉的場(chǎng)景是用戶畫像、推薦系統(tǒng)、輿情分析等等,這些場(chǎng)景并不需要什么實(shí)時(shí)性,批處理即可。但是對(duì)于物聯(lián)網(wǎng)場(chǎng)景,需要基于采集的數(shù)據(jù)做實(shí)時(shí)預(yù)警、決策,延時(shí)要控制在秒級(jí)以內(nèi)。如果計(jì)算沒(méi)有實(shí)時(shí)性,物聯(lián)網(wǎng)的商業(yè)價(jià)值就大打折扣。蘇州安全物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)軟件開(kāi)發(fā)原始數(shù)據(jù)的采集可能頻次挺高,但具體分析時(shí),往往不需要對(duì)原始收據(jù)進(jìn)行,而是數(shù)據(jù)降頻之后。
分析大數(shù)據(jù)物聯(lián)網(wǎng)傳感器持續(xù)接收來(lái)自大量連接的異構(gòu)設(shè)備的數(shù)據(jù)。隨著聯(lián)網(wǎng)設(shè)備數(shù)量的增加,物聯(lián)網(wǎng)系統(tǒng)需要具有可伸縮性,以適應(yīng)數(shù)據(jù)的流入。分析系統(tǒng)處理這些數(shù)據(jù)并提供有價(jià)值的報(bào)告,這將使企業(yè)具有競(jìng)爭(zhēng)優(yōu)勢(shì)。由于數(shù)據(jù)是基于其類型挖掘的,因此必須對(duì)數(shù)據(jù)進(jìn)行分岔以充分利用數(shù)據(jù)。根據(jù)問(wèn)題數(shù)據(jù)的類型,可以進(jìn)行不同類型的分析。比較常見(jiàn)的有:1)流分析(StreamingAnalytics)流分析結(jié)合了來(lái)自傳感器的未排序的流數(shù)據(jù)和來(lái)自研究的存儲(chǔ)數(shù)據(jù),以發(fā)現(xiàn)熟悉的模式。這種方法的實(shí)時(shí)分析可以在車隊(duì)跟蹤和銀行交易等用例中提供幫助。2)地理空間分析(GeospatialAnalytics)另一類大數(shù)據(jù)分析方法是地理空間,其中IoT傳感器數(shù)據(jù)和傳感器的物理位置的組合可以為預(yù)測(cè)分析提供整體視角。物聯(lián)網(wǎng)世界中的對(duì)象數(shù)量眾多,其通過(guò)無(wú)線網(wǎng)絡(luò)發(fā)送數(shù)據(jù)的能力有助于獲得詳細(xì)的數(shù)據(jù)轉(zhuǎn)儲(chǔ),這些數(shù)據(jù)轉(zhuǎn)儲(chǔ)可用于促進(jìn)洞察。
實(shí)時(shí)數(shù)據(jù)和歷史數(shù)據(jù)的處理要合二為一。實(shí)時(shí)數(shù)據(jù)在緩存里,歷史數(shù)據(jù)在持久化存儲(chǔ)介質(zhì)里,而且可能依據(jù)時(shí)長(zhǎng),保留在不同存儲(chǔ)介質(zhì)里。系統(tǒng)應(yīng)該隱藏背后的存儲(chǔ),給用戶和應(yīng)用呈現(xiàn)的是同一個(gè)接口和界面。無(wú)論是訪問(wèn)新采集的數(shù)據(jù)還是十年前的老數(shù)據(jù),除輸入的時(shí)間參數(shù)不同之外,其余應(yīng)該是一樣的。8.需要保證數(shù)據(jù)能持續(xù)穩(wěn)定寫入。對(duì)于物聯(lián)網(wǎng)系統(tǒng),數(shù)據(jù)流量往往是平穩(wěn)的,因此數(shù)據(jù)寫入所需要的資源往往是可以估算的。但是變化的是查詢、分析,特別是即席查詢,有可能耗費(fèi)很大的系統(tǒng)資源,不可控。因此系統(tǒng)必須保證分配足夠的資源以確保數(shù)據(jù)能夠?qū)懭胂到y(tǒng)而不被丟失。準(zhǔn)確的說(shuō),系統(tǒng)必須是一個(gè)寫優(yōu)先系統(tǒng)。9.需要對(duì)數(shù)據(jù)支持靈活的多維度分析。對(duì)于聯(lián)網(wǎng)設(shè)備產(chǎn)生的數(shù)據(jù),需要進(jìn)行各種維度的統(tǒng)計(jì)分析,比如從設(shè)備所處的地域進(jìn)行分析,從設(shè)備的型號(hào)、供應(yīng)商進(jìn)行分析,從設(shè)備所使用的人員進(jìn)行分析等等。而且這些維度的分析是無(wú)法事先想好的,而是在實(shí)際運(yùn)營(yíng)過(guò)程中,根據(jù)業(yè)務(wù)發(fā)展的需求定下來(lái)的。因此物聯(lián)網(wǎng)大數(shù)據(jù)系統(tǒng)需要一個(gè)靈活的機(jī)制增加某個(gè)維度的分析。設(shè)備是很難同步的,不同設(shè)備采集數(shù)據(jù)的時(shí)間點(diǎn)是很難對(duì)齊的。
物聯(lián)網(wǎng)就是物物相連的互聯(lián)網(wǎng)。這有兩層意思:其一,物聯(lián)網(wǎng)的**和基礎(chǔ)仍然是互聯(lián)網(wǎng),是在互聯(lián)網(wǎng)基礎(chǔ)上的延伸和擴(kuò)展的網(wǎng)絡(luò);其二,其用戶端延伸和擴(kuò)展到了任何物品與物品之間,進(jìn)行信息交換和通信,也就是物物相息。物聯(lián)網(wǎng)通過(guò)智能感知、識(shí)別技術(shù)與普適計(jì)算等通信感知技術(shù),廣泛應(yīng)用于網(wǎng)絡(luò)的融合中,也因此被稱為繼計(jì)算機(jī)、互聯(lián)網(wǎng)之后世界信息產(chǎn)業(yè)發(fā)展的第三次浪潮。物聯(lián)網(wǎng)是互聯(lián)網(wǎng)的應(yīng)用拓展,與其說(shuō)物聯(lián)網(wǎng)是網(wǎng)絡(luò),不如說(shuō)物聯(lián)網(wǎng)是業(yè)務(wù)和應(yīng)用。因此,應(yīng)用創(chuàng)新是物聯(lián)網(wǎng)發(fā)展的**,以用戶體驗(yàn)為**的創(chuàng)新2.0是物聯(lián)網(wǎng)發(fā)展的靈魂。大數(shù)據(jù)(bigdata),指無(wú)法在一定時(shí)間范圍內(nèi)用常規(guī)軟件工具進(jìn)行捕捉、管理和處理的數(shù)據(jù)整合,是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力的海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。需要提供靈活的數(shù)據(jù)管理策略。溫州特色物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)軟件開(kāi)發(fā)
需要支持即席分析和查詢。衢州人工智能物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)有哪些
設(shè)備接入服務(wù):設(shè)備接入是華為OceanConnect物聯(lián)網(wǎng)平臺(tái)對(duì)海量設(shè)備進(jìn)行聯(lián)接、數(shù)據(jù)采集/轉(zhuǎn)發(fā)、遠(yuǎn)程控制的云服務(wù)??蓪?shí)現(xiàn)海量設(shè)備與云端之間雙向通信連接、設(shè)備數(shù)據(jù)采集上云,支持上層應(yīng)用通過(guò)調(diào)用API遠(yuǎn)程控制設(shè)備,還提供了與華為云其他云服務(wù)無(wú)縫對(duì)接的規(guī)則引擎,可應(yīng)用于各種物聯(lián)網(wǎng)場(chǎng)景。設(shè)備接入服務(wù)還可以搭配設(shè)備管理服務(wù)使用,可實(shí)現(xiàn)產(chǎn)品模型定義、設(shè)備生命周期可視化管理,提供強(qiáng)大的面向行業(yè)應(yīng)用開(kāi)放能力,幫助企業(yè)快速構(gòu)建創(chuàng)新的物聯(lián)網(wǎng)業(yè)務(wù)。數(shù)據(jù)接入服務(wù)(DIS):數(shù)據(jù)接入服務(wù)(DataIngestionService)為處理或分析流數(shù)據(jù)的自定義應(yīng)用程序構(gòu)建數(shù)據(jù)流管道,主要解決云服務(wù)外的數(shù)據(jù)實(shí)時(shí)傳輸?shù)皆品?wù)內(nèi)的問(wèn)題。數(shù)據(jù)接入服務(wù)每小時(shí)可從數(shù)十萬(wàn)種數(shù)據(jù)源(如IoT數(shù)據(jù)采集、日志和定位追蹤事件、網(wǎng)站點(diǎn)擊流、社交媒體源等)中連續(xù)捕獲、傳送和存儲(chǔ)數(shù)TB數(shù)據(jù)。實(shí)時(shí)流計(jì)算服務(wù)(CS):實(shí)時(shí)流計(jì)算服務(wù)(CloudStreamService),是運(yùn)行在公有云上的實(shí)時(shí)流式大數(shù)據(jù)分析服務(wù),全托管的方式用戶無(wú)需感知計(jì)算集群,只需聚焦于StreamSQL業(yè)務(wù),即時(shí)執(zhí)行作業(yè)。衢州人工智能物聯(lián)網(wǎng)大數(shù)據(jù)平臺(tái)有哪些