脫脂體中的殘留碳被除去,以得到具有理想煅燒體組織和熱導率的氮化鋁煅燒體。如果爐內壓力超過150Pa,則不能充分地除去碳,如果溫度超過1500℃進行加熱,氮化鋁晶粒將會有致密化的趨勢,碳的擴散路徑將會被閉合,因此不能充分的除去碳。此處,如果在爐內壓力0.4MPa以上的加壓氣氛下進行煅燒,則液相化的煅燒助劑不易揮發(fā),能有效的預制氮化鋁晶粒的空隙產(chǎn)生,能有效的提高氮化鋁基板的絕緣特性;如果煅燒溫度不足1700℃,則由于氮化鋁的晶粒的粒子生長不充分而無法得到致密的的煅燒體組織,導致基板的導熱率下降,;另一方面,如果煅燒溫度超過1900℃,則氮化鋁晶粒過度長大,導致氧化鋁晶粒間的空隙增大,從而導致氮化鋁基板的絕緣性下降。一般而言,氮化鋁晶粒的平均粒徑在2μm到5μm之間可以有較好的熱導率及機械強度。晶粒過小,致密度下降,則導熱率下降;晶粒過大,則氮化鋁晶粒間隙增大,從而存在絕緣性、機械強度下降的情況。此處,非氧化性氣氛是指不含氧等氧化性氣體的惰性氣氛,還原氣氛等。粘結劑是氮化鋁陶瓷粉末的載體,決定了喂料注射成形的流變性能和注射性能。大連微米氧化鋁
氮化鋁是一種綜合性能優(yōu)良的陶瓷材料,由于氮化鋁是共價化合物,自擴散系數(shù)小,熔點高,導致其難以燒結,直到20世紀50年代,人們才成功制得氮化鋁陶瓷,并作為耐火材料應用于純鐵、鋁以及鋁合金的熔煉。自20世紀70年代以來,隨著研究的不斷深入,氮化鋁的制備工藝日趨成熟,其應用范圍也不斷擴大。尤其是進入21世紀以來,隨著微電子技術的飛速發(fā)展,電子整機和電子元器件正朝微型化、輕型化、集成化,以及高可靠性和大功率輸出等方向發(fā)展,越來越復雜的器件對基片和封裝材料的散熱提出了更高要求,進一步促進了氮化鋁產(chǎn)業(yè)的蓬勃發(fā)展。大連微米氧化鋁隨著近年來全球范圍內電子陶瓷產(chǎn)業(yè)化規(guī)模的不斷擴大,CIM 技術誘人的應用前景更值得期待。
采用小粒徑氮化鋁粉:氮化鋁燒結過程的驅動力為表面能,顆粒細小的AlN粉體能夠增強燒結活性,增加燒結推動力從而加速燒結過程。研究證實,當?shù)X原始粉料的起始粒徑細小20倍后,陶瓷的燒結速率將增加147倍。燒結原料應選擇粒徑小且分布均勻的氮化鋁粉,可防止二次再結晶,內部的大顆粒易發(fā)生晶粒異常生長而不利于致密化燒結;若顆粒分布不均勻,在燒結過程中容易發(fā)生個別晶體異常長大而影響燒結。此外,氮化鋁陶瓷的燒結機理有時也受原始粉末粒度的影響。微米級的氮化鋁粉體按體積擴散機理進行燒結,而納米級的粉體則按晶界擴散或者表面擴散機理進行燒結。但目前而言,細小均勻的氮化鋁粉體制備很困難,大多通過濕化學法結合碳熱還原法制備,不但燒結工藝復雜,而且耗能多多規(guī)模的推廣應用仍舊有一定的限制。國內在小粒徑高性能氮化鋁粉的供應上,仍十分稀缺。
氮化鋁膜是指用氣相沉積、液相沉積、表面轉化或其它表面技術制備的氮化鋁覆蓋層 。氮化鋁膜在微電子和光電子器件、襯底材料、絕緣層材料、封裝材料上有著十分廣闊的應用前景。由于它的聲表面波速度高,具有壓電性,可用作聲表面波器件。此外,氮化鋁還具有良好的耐磨損和耐腐蝕性能,可用作防護膜。氮化鋁膜很早用化學氣相沉積(CVI)制備,其沉積溫度高達1000攝氏度以上。后來,通過采用等離子體增強化學氣相沉積,或用物相沉積((PVD)方法,其沉積溫度逐步降到500攝氏度以下、甚至可以在接近室溫條件下沉積。大多數(shù)氮化鋁膜為多晶,但已在藍寶石基材上成功地外延生長制成單晶氮化鋁膜。此外,也曾沉積出非晶氮化鋁膜。凝膠流延成型和注凝成型,成為氮化鋁陶瓷的主要生產(chǎn)方法,從而促進氮化鋁陶瓷的推廣與應用。
氮化鋁陶瓷因具有高熱導率、低膨脹系數(shù)、度、耐腐蝕、電性能優(yōu)、光傳輸性好等優(yōu)異特性,是理想的大規(guī)模集成電路散熱基板和封裝材料。隨著我國電子信息產(chǎn)業(yè)蓬勃發(fā)展,電子設備儀器的小型輕量化,以及混合集成度大幅提高,對散熱基板的導熱性能要求越來越高,氮化鋁陶瓷的熱導率較氧化鋁陶瓷高5倍以上,膨脹系數(shù)低,與硅芯片的匹配性更好,因此在大功率器件等領域,已逐漸取代氧化鋁基板,成為市場主流。但氮化鋁陶瓷基板行業(yè)進入技術壁壘高,全球市場中,具有量產(chǎn)能力的企業(yè)主要集中在日本,日本企業(yè)在國際氮化鋁陶瓷基板市場中處于壟斷地位,此外,中國臺灣地區(qū)也有部分產(chǎn)能。而隨著國內市場對氮化鋁陶瓷基板的需求快速上升,在市場的拉動下,進入行業(yè)布局的企業(yè)開始增多,但現(xiàn)階段我國擁有量產(chǎn)能力的企業(yè)數(shù)量依然極少。氮化鋁可通過氧化鋁和碳的還原作用或直接氮化金屬鋁來制備。舟山導熱氮化鋁廠家
氮化鋁粉體的制備工藝還有自蔓延合成法、原位自反應合成法、等離子化學合成法及化學氣相沉淀法等。大連微米氧化鋁
薄膜法是通過真空鍍膜技術在AlN基板表面實現(xiàn)金屬化。通常采用的真空鍍膜技術有離子鍍、真空蒸鍍、濺射鍍膜等。但金屬和陶瓷是兩種物理化學性質完全不同的材料,直接在陶瓷基板表面進行金屬化得到的金屬化層的附著力不高,并且陶瓷基板與金屬的熱膨脹系數(shù)不匹配,在工作時會受到較大的熱應力。為了提高金屬化層的附著力和減小陶瓷與金屬的熱應力,陶瓷基板一般采用多層金屬結構。直接覆銅法(DBC)是一種基于陶瓷基板發(fā)展起來的陶瓷表面金屬化方法,基本原理是:在弱氧化環(huán)境中,與陶瓷表面連接的金屬銅表面會被氧化形成一層Cu[O]共晶液相,該液相對互相接觸的金屬銅和陶瓷基板表面都具有良好潤濕效果,并在界面處形成CuAlO2等化合物使金屬銅能夠牢固的敖接在陶瓷表面,實現(xiàn)陶瓷表面的金屬化。而AlN基板具有較強的共價鍵,金屬銅直接覆著在其表面的附著力不高,因此必須進行預處理來改善其與Cu的附著力。一般先對其表面進行氧化,生成一層薄Al2O3,通過該氧化層來實現(xiàn)與金屬銅的連接。大連微米氧化鋁